Part 1 - Conceptual

- 1. True or False: $\{1\} \in \mathcal{P}(\{1,2\})$ Solution: True. $\{1\} \in \mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$
- 2. True or False: $\{1\} \subseteq \mathcal{P}(\{1,2\})$ Solution: False. $\{1\} \subseteq \mathcal{P}(\{1,2\})$ would mean that $1 \in \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$ which is not true.
- 3. Show that the following if-then statement is false by giving a counterexample: Let A, B, C be sets. If $A \cap B \neq \emptyset$ and $B \cap C \neq \emptyset$, then $A \cap C \neq \emptyset$.

Solution: Let $A = \{1, 2\}, B = \{2, 3\}, C = \{3, 4\}$. Then $A \cap B = \{2\} \neq \emptyset$ and $B \cap C = \{3\} \neq \emptyset$, however $A \cap C = \emptyset$.

Part 2 - Proofs

4. Prove that $\{12n \mid n \in \mathbb{Z}\} \subseteq \{2n \mid n \in \mathbb{Z}\} \cap \{3n \mid n \in \mathbb{Z}\}.$

Proof. Let $x \in \{12n \mid n \in \mathbb{Z}\}$.

Then x = 12n for some $n \in \mathbb{Z}$.

Note that x = 2(6n) = 2k where k = 6n is an integer (because the set of integers is closed under multiplication).

Thus $x \in \{2n \mid n \in \mathbb{Z}\}.$

Since x = 3(4n) = 3l where l = 4n is an integer (because the set of integers is closed under multiplication).

Thus $x \in \{3n \mid n \in \mathbb{Z}\}.$

We see then that $x \in \{2n \mid n \in \mathbb{Z}\} \cap \{3n \mid n \in \mathbb{Z}\}.$

Therefore $\{12n \mid n \in \mathbb{Z}\} \subseteq \{2n \mid n \in \mathbb{Z}\} \cap \{3n \mid n \in \mathbb{Z}\}.$

5. Prove that $\{9^n \mid n \in \mathbb{Z}\} \subseteq \{3^n \mid n \in \mathbb{Z}\}$, but $\{9^n \mid n \in \mathbb{Z}\} \neq \{3^n \mid n \in \mathbb{Z}\}$.

Proof. Let $x \in \{9^n \mid n \in \mathbb{Z}\}$. Then $x = 9^n$ where $n \in \mathbb{Z}$. So $x = 3^{2n} = 3^k$ where k = 2n is an integer. Thus $x \in \{3^n \mid n \in \mathbb{Z}\}$. Hence $\{9^n \mid n \in \mathbb{Z}\} \subseteq \{3^n \mid n \in \mathbb{Z}\}$. Note that $3 \in \{3^n \mid n \in \mathbb{Z}\}$, but $3 \notin \{9^n \mid n \in \mathbb{Z}\}$. Thus $\{9^n \mid n \in \mathbb{Z}\} \neq \{3^n \mid n \in \mathbb{Z}\}$

6. Let $A = \{2k \mid k \in \mathbb{Z}\}$ and $B = \{3n \mid n \in \mathbb{Z}\}$. Prove that $A \cap B = \{6m \mid m \in \mathbb{Z}\}$.

Proof. (\subseteq) First we show that $A \cap B \subseteq \{6m \mid m \in \mathbb{Z}\}$. Suppose that $x \in A \cap B$. Then $x \in A$ and $x \in B$. Then x = 2k and x = 3n where $k, n \in \mathbb{Z}$. Thus 2k = 3n. Therefore, 3n is even.

Since an odd integer multiplied by and odd integer is odd, we cannot have that n is odd.

Therefore n is even.

So n = 2l where $l \in \mathbb{Z}$. Thus $x = 3n = 3(2l) = 6l \in \{6m \mid m \in \mathbb{Z}\}.$ So $A \cap B \subseteq \{6m \mid m \in \mathbb{Z}\}.$ (2)

Now we show that $\{6m \mid m \in \mathbb{Z}\} \subseteq A \cap B$. Let $x \in \{6m \mid m \in \mathbb{Z}\}.$ Then x = 6m where $m \in \mathbb{Z}$. Note that x = 6m = 2(3m) = 3(2m). Hence $x \in A$ and $x \in B$. Thus $x \in A \cap B$. So $\{6m \mid m \in \mathbb{Z}\} \subseteq A \cap B$.

Therefore by (\subseteq) and (\supseteq) we get that $A \cap B = \{6m \mid m \in \mathbb{Z}\}.$

7. Let A, B, C, D be sets.

- (a) Prove that if $A \subseteq B$, then $A \cup C \subseteq B \cup C$. *Proof.* Suppose $x \in A \cup C$. We will show that $x \in B \cup C$. We know that $x \in A$ or $x \in C$. <u>Case 1</u>: Suppose that $x \in A$. Since $A \subseteq B$ we have that $x \in B$. So $x \in B \cup C$. <u>Case 2</u>: Suppose that $x \in C$. Then $x \in B \cup C$. In either case above, we get that $x \in B \cup C$. So $A \cup C \subseteq B \cup C$.
- (b) Prove that if $A \subseteq B$ then $A \subseteq B \cup C$.

Proof. Suppose that $A \subseteq B$. We use this to show that $A \subseteq B \cup C$. Let $x \in A$. Since $A \subseteq B$ and $x \in A$, we know that $x \in B$. Since $x \in B$, we know that $x \in B \cup C$. Therefore, if $x \in A$, then $x \in B \cup C$ is true. So $A \subseteq B \cup C$.

(c) Prove that if $A \subseteq B$, then $A - C \subseteq B - C$.

Proof. Let $x \in A - C$. We will show that $x \in B - C$. We know that $x \in A$ and $x \notin C$, because $x \in A - C$. Since $x \in A$ and $A \subseteq B$ we have that $x \in B$. Since $x \in B$ and $x \notin C$ it follows that $x \in B - C$. Therefore $A - C \subseteq B - C$.

(d) Prove that $A \subseteq B$ if and only if $A - B = \emptyset$.

Proof 1 - by contraposition. In this version of the proof we will use contraposition. Recall that P iff Q is equivalent to $\neg P$ iff $\neg Q$. Thus " $A \subseteq B$ if and only if $A - B = \emptyset$ " is equivalent to " $A \not\subseteq B$ if and only if $A - B \neq \emptyset$ ". We instead prove this second statement. (\Rightarrow) Suppose that $A \not\subseteq B$.

This means that there exists an $x \in A$ with $x \notin B$.

Thus there exists x with $x \in A - B$.

So $A - B \neq \emptyset$.

(\Leftarrow) Suppose that $A - B \neq \emptyset$. Then there exists $x \in A - B$. So $x \in A$ and $x \notin B$.

Thus $A \not\subseteq B$.

	-	-	٦	
L			I	
L			I	

Proof 2 - by contradiction. (\Rightarrow) First, we will show that if $A \subseteq B$, then $A - B = \emptyset$. We will prove this by contradiction. Suppose that $A \subseteq B$, but $A - B \neq \emptyset$. Then there exists $x \in A - B$. So $x \in A$ and $x \notin B$. But $A \subseteq B$, so $x \in A$ implies that $x \in B$. Contradiction. Therefore $A - B = \emptyset$. (\Leftarrow) Next, we will show that if $A - B = \emptyset$, then $A \subseteq B$. Suppose $x \in A$. We will show that $x \in B$. Suppose to the contrary that $x \notin B$. Then $x \in A - B$, since $x \in A$ and $x \notin B$. But $A - B = \emptyset$. Contradiction. Therefore $x \in B$. Therefore $A \subseteq B$.

(e) Prove that $A \subseteq B$ if and only if $A \cap B = A$.

Proof. (\Rightarrow) We first show that if $A \subseteq B$ then $A \cap B = A$. Suppose that $A \subseteq B$. We will show that $A \cap B = A$. We know that $A \cap B \subseteq A$ by the definition of intersection. Why is $A \subseteq A \cap B$? Let $x \in A$. Then $x \in B$ because $A \subseteq B$. Thus $x \in A$ and $x \in B$. So $x \in A \cap B$. Thus $A \subseteq A \cap B$ Since $A \cap B \subseteq A$ and $A \subseteq A \cap B$ we know that $A \cap B = A$. (⇐) We now show that if $A \cap B = A$ then $A \subseteq B$. Suppose that $A \cap B = A$. We will show that $A \subseteq B$. Let $x \in A$. Then $x \in A \cap B$ since $A = A \cap B$. Thus $x \in B$ since $x \in A \cap B$. Therefore $A \subseteq B$.

By (\Rightarrow) and (\Leftarrow) we have shown that $A \subseteq B$ if and only if $A \cap B = A$.

(f) Prove that if $B \subseteq C$, then $A \times B \subseteq A \times C$.

Proof. Suppose that $B \subseteq C$. Let $x \in A \times B$. Then x = (a, b) where $a \in A$ and $b \in B$. Since $B \subseteq C$ and $b \in B$ we know that $b \in C$. Thus x = (a, b) where $a \in A$ and $b \in C$. Hence $x \in A \times C$. Therefore $A \times B \subseteq A \times C$.

(g) Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Proof. (⊆)

First, we will show that $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$. Suppose that $(x, y) \in A \times (B \cap C)$. Then $x \in A$ and $y \in B \cap C$. Since $y \in B \cap C$, we have that $y \in B$ and $y \in C$. Since $x \in A$ and $y \in B$, we have that $(x, y) \in A \times B$. Since $x \in A$ and $y \in C$, we have that $(x, y) \in A \times C$. So $(x, y) \in (A \times B) \cap (A \times C)$. Therefore $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$. (⊇) Next, we will show that $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$. Suppose that $(x, y) \in (A \times B) \cap (A \times C)$. Then $(x, y) \in A \times B$ and $(x, y) \in A \times C$. Since $(x, y) \in A \times B$ we get that $x \in A$ and $y \in B$. Since $(x, y) \in A \times C$ we get that $x \in A$ and $y \in C$. So $y \in B \cap C$, because $y \in B$ and $y \in C$. Thus $(x, y) \in A \times (B \cap C)$, because $x \in A$ and $y \in B \cap C$. Ergo, $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$.

Therefore by (\subseteq) and (\supseteq) we get that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

(h) Prove that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

Proof. (C) First, we will show that $(A \times B) \cap (C \times D) \subseteq (A \cap A)$ $(C) \times (B \cap D).$ Suppose $(x, y) \in (A \times B) \cap (C \times D)$. Then $(x, y) \in (A \times B)$ and $(x, y) \in (C \times D)$. So $x \in A$ and $y \in B$, because $(x, y) \in (A \times B)$. Also, $x \in C$ and $y \in D$, because $(x, y) \in (C \times D)$. So $x \in A \cap C$, because $x \in A$ and $x \in C$. Also $y \in B \cap D$, because $y \in B$ and $y \in D$. So $(x, y) \in (A \cap C) \times (B \cap D)$, because $x \in A \cap C$ and $y \in B \cap D$. Therefore $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$. (2) Next, we will show that $(A \cap C) \times (B \cap D) \subseteq (A \times B) \cap (C \times D)$. Suppose that $(x, y) \in (A \cap C) \times (B \cap D)$. Then $x \in A \cap C$ and $y \in B \cap D$. So $x \in A$ and $x \in C$, because $x \in A \cap C$. Also $y \in B$ and $y \in D$, because $y \in B \cap D$. So $(x, y) \in A \times B$, because $x \in A$ and $y \in B$. Also, $(x, y) \in C \times D$, because $x \in C$ and $y \in D$. Therefore $(x, y) \in (A \times B) \cap (C \times D)$, because $(x, y) \in A \times B$ and $(x,y) \in C \times D$. So $(A \cap C) \times (B \cap D) \subseteq (A \times B) \cap (C \times D)$.

Therefore, by (\subseteq) and (\supseteq) we get that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

(i) Prove that $A \cap (B \cap C) = (A \cap B) \cap C$.

Proof. (\subseteq) First, we will show that $A \cap (B \cap C) \subseteq (A \cap B) \cap C$. Suppose $x \in A \cap (B \cap C)$. Then $x \in A$ and $x \in B \cap C$. So $x \in A$ and $x \in B$ and $x \in C$. Since $x \in A$ and $x \in B$ we have that $x \in A \cap B$. So $x \in (A \cap B) \cap C$, because $x \in A \cap B$ and $x \in C$. Therefore, $A \cap (B \cap C) \subseteq (A \cap B) \cap C$. (2) Now we will show that $(A \cap B) \cap C \subseteq A \cap (B \cap C)$. Let $x \in (A \cap B) \cap C$. Then $x \in (A \cap B)$ and $x \in C$. Thus $x \in A$ and $x \in B$ and $x \in C$. Since $x \in B$ and $x \in C$ we have that $x \in B \cap C$. Hence $x \in A \cap (B \cap C)$ since $x \in A$ and $x \in B \cap C$.

Therefore, by (\subseteq) and (\supseteq) we get that $A \cap (B \cap C) = (A \cap B) \cap C$.

(j) Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof. (\subseteq) First, we will show that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Let $x \in A \cup (B \cap C)$. We know $x \in A$ or $x \in B \cap C$. <u>Case 1</u>: Suppose that $x \in A$. Then $x \in A \cup B$, since $x \in A$. Also, $x \in A \cup C$, since $x \in A$. Thus $x \in A \cup C$, since $x \in A$. Thus $x \in A \cup B$ and $x \in A \cup C$. So, $x \in (A \cup B) \cap (A \cup C)$. <u>Case 2</u>: Suppose that $x \in B \cap C$. Then $x \in B$ and $x \in C$. So $x \in A \cup B$, because $x \in B$. Also $x \in A \cup C$, because $x \in C$. Thus $x \in A \cup B$ and $x \in A \cup C$. So $x \in (A \cup B) \cap (A \cup C)$.

In either case, we have $x \in (A \cup B) \cap (A \cup C)$. So $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

(2) Next, we will show that $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Suppose that $x \in (A \cup B) \cap (A \cup C)$. Then $x \in (A \cup B)$ and $x \in (A \cup C)$. So $x \in A$ or $x \in B$, because $x \in (A \cup B)$. <u>Case 1</u>: Suppose that $x \in A$. Then $x \in A \cup (B \cap C)$, because $x \in A$. <u>Case 2</u>: Suppose that $x \in B$. We know that $x \in A$ or $x \in C$, because $x \in (A \cup C)$ (from above before case 1). We break case 2 into two sub-cases. <u>Case 2i</u>: Suppose that $x \in A$. Then $x \in A \cup (B \cap C)$, because $x \in A$. <u>Case 2ii</u>: Suppose that $x \in C$. Then $x \in B \cap C$, because $x \in B$ and $x \in C$. So $x \in A \cup (B \cap C)$, because $x \in B \cap C$.

In every case, we have $x \in A \cup (B \cap C)$. Therefore $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Therefore, by (\subseteq) and (\supseteq) we get that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- 8. Let A and B be sets.
 - (a) Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

Proof. (\subseteq) First, we will show that $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$. Suppose that $S \in \mathcal{P}(A \cap B)$. We will show that $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. We know that $S \subseteq A \cap B$, because $S \in \mathcal{P}(A \cap B)$. So every element of S is in $A \cap B$. So every element of S is in both A and B. So $S \subseteq A$ and $S \subseteq B$. So $S \subseteq \mathcal{P}(A)$ and $\mathcal{P}(B)$. So $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Therefore $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$. (\bigcirc) Next, we will show that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$. Suppose that $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. We will show that $S \in \mathcal{P}(A \cap B)$. We know that $S \in \mathcal{P}(A)$ and $\mathcal{P}(B)$, because $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. So $S \subseteq A$ and $S \subseteq B$. So every element of S is in both A and B. So every element of S is in $A \cap B$. So $S \subseteq A \cap B$. So $S \subseteq A \cap B$. Therefore $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Therefore, by (\subseteq) and (\supseteq) we get that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

(b) Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Proof. Suppose that $S \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then $S \in \mathcal{P}(A)$ or $S \in \mathcal{P}(B)$. <u>Case 1</u>: Suppose that $S \in \mathcal{P}(A)$. Then $S \subseteq A$. So $S \subseteq A \cup B$, by problem 7b above. <u>Case 2</u>: $S \in \mathcal{P}(B)$ Then $S \subseteq B$. So $S \subseteq A \cup B$, by problem 7b above. In either case, we have $S \subseteq A \cup B$. So $S \in \mathcal{P}(A \cup B)$. Thus, if $S \in \mathcal{P}(A) \cup \mathcal{P}(B)$, then $S \in \mathcal{P}(A \cup B)$. Therefore $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

(c) Give an example where $\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$.

Solution:

Let $A = \{1\}, B = \{2\}$. Then $\mathcal{P}(A) = \{\emptyset, \{1\}\}$. And $\mathcal{P}(B) = \{\emptyset, \{2\}\}$. So $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}\}$. Also $A \cup B = \{1, 2\}$. So $\mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$. This example satisfies $\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$. 9. Let A and B be sets. Prove that A - B and B are disjoint.

Proof. We will show that $(A - B) \cap B = \emptyset$. We do this by contradiction. Suppose that $(A - B) \cap B \neq \emptyset$. Then there exists $x \in (A - B) \cap B$. So $x \in A - B$ and $x \in B$. But $x \in A - B$ implies that $x \in A$ and $x \notin B$. Thus we have that $x \in B$ and $x \notin B$. Contradiction. (We cannot have both $x \in B$ and $x \notin B$.) Therefore $(A - B) \cap B = \emptyset$. Therefore A - B and B are disjoint.

10. Let A and B be sets. Suppose that $B \neq \emptyset$ and $A \times B \subseteq B \times C$. Prove that $A \subseteq C$.

Proof. Suppose that $B \neq \emptyset$ and $A \times B \subseteq B \times C$. Let $a \in A$. Since B is not empty there exists some $b \in B$. Then $(a, b) \in A \times B$. Since $A \times B \subseteq B \times C$ and $(a, b) \in A \times B$, we get that $(a, b) \in B \times C$. Thus $a \in B$ and $b \in C$. Then $(a, a) \in A \times B$ because $a \in A$ and $a \in B$. Again since $A \times B \subseteq B \times C$ and $(a, a) \in A \times B$ we get that $(a, a) \in B \times C$. Therefore $a \in C$. Hence $A \subseteq C$.